

Managing Vendor Quality Risk 1 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

Managing Vendor Quality Risk
Rex Black, President, RBCS, Inc.

More and more projects involve more integration of custom developed or
commercial-off-the-shelf (COTS) components, rather than in-house development
or enhancement of software. In effect, these two approaches constitute direct or
indirect outsourcing of some or all of the development work for a system,
respectively.

While some project managers see such outsourcing of development as reducing
the overall risk, each integrated component can bring with it significantly
increased risks to system quality. In this article, I’ll explain the factors that lead to
these risks, and then strategies you can use to manage them.

I’ll illustrate the factors and the strategies with a hypothetical project. In this
project, assume you are the project manager for a bank that is creating a Web
application that allows homeowners to apply for a home equity loan on the
Internet. You have two component vendors. You buy a COTS database
management system from one vendor. You will hire an outsourced custom
development organization to develop the Web pages, the business logic on the
servers, and the database schemas and commands to manage the data. Let’s see
how you can recognize the factors that create quality risks, and the strategies you
can use to manage those risks.

Quality Risk Factors in Integration

Figure 1 shows four factors that lead to increased quality risk for a system.
Working clockwise from the upper left, let’s take a look at each factor that can
increase risk to system quality.

Figure 1: Sources of risk in system integration

One factor that increases quality risk is coupling, which creates a strong
interaction with the system—or consequence to the system—when the
component fails. For example, suppose the customer table on the Web
application database becomes locked and inaccessible under normal load. In
such a case, most of the other components of the system, being unable to access
customer information, will also fail. The database is strongly coupled to the rest
of the system.

Another factor that increases risks is irreplaceability, when there are few similar
components available or the replacement is costly or requires a long-lead time. If
such a component creates quality problems for your system, you are stuck with
them. For example, the database package you choose might be replaceable,
provided that you don’t do anything non-standard with it. However, the
development organization will want to be paid for the custom-developed Web
application, and, should you choose to try to replace it, off-the-shelf products
might not exist.

Yet another factor that increases risks is essentiality, where some key feature or
features of the system will be unavailable if the component does not work
properly. For example, suppose you planned to include a pop-up loan planner
on the first page of your application to allow customers to evaluate some
payment scenarios. Should that component not work, you can still deliver the
major features of your application. A pop-up loan planner is not essential to
your system. However, if the subsystem that accesses a credit bureau to check

Managing Vendor Quality Risk 2 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

customer credit scores does not work, you cannot process loan applications, since
checking credit scores is essential.

The final factor that increases risks is vendor quality problems, especially if
accompanied by slow turnaround on bug fixes when you report problems. If
there is a high likelihood of the vendor sending you a bad component, the level
of risk to the quality of the entire system is higher. For example, if you buy a
commercial database from a reputable, established vendor, or if you select a
custom development organization with a proven track record, then you will
probably have fewer problems. If you use a new open-source database that has
never been used in commercial applications before, or if you use a newly-open
custom development organization, then you will probably have more problems,
particularly is there is no or poor component technical support.

So, you can see how these factors would exist and affect a typical data center
application. For a weapons system where defense contractors intend to develop
software to run on COTS platforms, the situation is similar, though the
replaceability and vendor quality problems could be exacerbated by limited
choices for components and vendors. How can you mitigate these risks? I have
seen and used four typical strategies.

Trust Your Vendors

One strategy is simply to trust the vendor’s component quality and testing, and
assume they will deliver a sufficiently-good, more-or-less working component to
you. This approach may sound silly and naïve, expressed in such words.
However, project teams do this all the time. My suggestion is, if you choose to
do so, do so with your eyes open. Understand the risks you are accepting.
Allocate schedule time and finances as a contingency for poor component
quality. The more coupled, essential, and irreplaceable the component, the
greater the impact of such a situation.

To continue with our example, suppose that you plan to trust both the custom
development organization and the database vendor. You could make such a
decision rationally by checking the custom development organization’s
references, assuming they can provide references for customers who used them
for projects that are very similar to yours in design and scale. The same is true
for the database vendor, though you might have to do your own research if their
sales and marketing staff cannot or will not provide references.

Managing Vendor Quality Risk 3 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

Let me mention that relying solely on an acceptance test is practically the same as
trusting your partners in the custom development situation. For the COTS
database, you could run an acceptance test at the beginning of the project for the
database, using simple models to evaluate database performance, reliability, and
data quality under your intended load conditions. However, for the custom-
developed component, you’ll have to wait until you receive the component until
you can acceptance test it. If the component fails the acceptance test, what
options do you have? Even if the contract stipulates that you don’t have to pay
under these circumstances, there is a good chance of a lawsuit, and you also have
the actual (and opportunity) costs associated with having to start over with a
new custom development organization.

Manage Your Vendors

Another strategy is to integrate, track, and manage the vendor testing of their
component as part of an overall, distributed test effort for the system. This
involves up-front planning, along with having sufficient clout with the vendor to
insist that they consider their test teams and test efforts subordinate to and
contained within yours.

To continue with our hypothetical project, imagine that you are working at a
large bank, and that the custom development organization is a small firm. They
will probably be motivated to get and retain your business. They will be
especially flexible if they think that you have particularly good testing processes
and that they can learn something from you. In exchange for the effort you
expend managing their testing, you will have early warning should quality
problems emerge, and therefore you will have more options to deal with such an
outcome.

Conversely, though, if you are buying the database from a large COTS vendor,
they probably see your business as a small part of their larger product sales
picture. They have their own test processes, product roadmap, and target release
dates. It is highly unlikely that they will be receptive to offers—much less
insistence—that you manage their testing operation.

Even with smaller COTS vendors, when they are selling a COTS component,
they will want to sell you want they are offering. They will likely be averse to
the possibility of an open-ended situation where you might redefine the
component’s requirements through expansive testing and ambiguous or
evolving pass/fail criteria for the tests. I have seen more than one COTS vendor
get burned by customers when they allowed this to happen.

Managing Vendor Quality Risk 4 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

Smart COTS vendors (large or small) would probably insist that this
management of their testing, and any resulting bug fixes and change requests, be
considered a customization of their component subject to time-and-materials
billing. The only likely exceptions to such a condition would arise when the
COTS vendor saw a strong possibility that working with you to fix problems and
change the product would benefit their current or future customers sufficiently
to justify the risks they would be taking.

Fix Your Vendor

Another option is to fix the component vendor testing or quality problems. In
other words, you go into the situation expecting to either revamp the vendor’s
test and quality processes or build new test and quality processes for them from
scratch. Both sides must expect that substantial effort, including product
modifications, will result. Once again, a key assumption is that you have the
clout to insist that you be allowed to go in and straighten out what’s broken in
their test and quality processes.

While this sounds daunting, on one project, my client hired me to do exactly that
for a vendor. It worked out nicely. The vendor was paid for their part of the
work, including the modifications. My client felt that the vendor brought
enough technical innovation and capability to the project that managing the
quality and testing problems for the vendor was worthwhile. With expectations
aligned from the start, both sides were happy.

Going back to our hypothetical example, suppose you assess the outsource
development organization before the project, and find their testing and quality
processes lacking. They accept your assessment. You offer to help them fix the
issues that were identified, and they accept that offer. If your assessment
identified the major problems, and if you and the vendor can resolve those
problems with the scope, budget, and schedule for the project, and if continuing
to work with that vendor makes sense for other reasons, then this can succeed.

However, for the database vendor, it’s difficult to imagine they would accede to
the request for an assessment of their testing to begin with, not to mention
allowing you to come in and implement changes to it. In fact, for any COTS
vendor, the very fact that they might agree to such a request should set off alarm
bells in your mind. You would have to ask yourself, do they actually have a
COTS product to sell or are we dealing with a prototype masquerading as a
product?

Managing Vendor Quality Risk 5 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

Test Your Vendor’s Component

A final option, especially if you find yourself confronted by proof of incompetent
testing by the vendor, is to disregard their testing, assume the component is
coming to you untested, and retest the component. You’ll have to allocate time
and effort for this, and deal with the fact that the vendor will likely push to have
every bug report you submit reclassified as a change request except in the most
egregious cases. You also have to ask yourself if the vendor might decide, at
some point, to cut their losses and disengage from the project. You’ll want to
make sure you have contingency plans in place should that happen.

I’ve had to do this for clients on system testing projects, notably on one project
when a vendor sold my client a mail server component that was seriously buggy.
We became aware of the problems by a series of misadventures where promised
deliverables continued to show up late, and even then with substantive bugs as
well as fit-and-finish problems that gradually eroded our confidence in them.
Eventually, the component did work and was included in the system, but the
entire process took a couple months, not the one-week deliver-and-integrate that
was in the project plan. Fortunately, slack elsewhere in the schedule prevented
this from becoming a project-endangering episode.

Returning once again to our example, suppose that you become aware, through
the delivery of poor-quality early prototypes from the custom development
organization, that serious quality problems exist. You can no longer trust their
testing. There’s not much point in managing a test process that is clearly broken.
There’s no time remaining in your schedule to go in and fix their testing process.
So, if you intend to stick with this vendor, you’ll need to start a serious testing
effort to take over where they have failed.

Suppose you become aware of similar problems with the database vendor. You
can confront the vendor with the problems. However, if they delivered
something to you with the assertion it would work, can you really trust them to
resolve the problems now? Would they be likely to let you manage their testing?
If you try to do the testing yourself, do you think they will fix the problems you
find? Most likely, if the component is not essential, you are best off omitting it,
or, if the component is replaceable, you are best off replacing it.

Whether for a COTS component or a custom developed component, these are
clearly nasty scenarios, and at some point you’d have to ask yourself how you
managed to get into such trouble. If you ran acceptance tests on a COTS
component, why did they fail to identify the problems? If you thoroughly vetted

Managing Vendor Quality Risk 6 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

your custom developer, why did they prove incompetent? How should your
quality risk mitigation strategy for outsourced components change for future
projects? These are all good questions, but ones to save for the project
retrospective. During the project, the focus must be on achieving the best-
possible outcome.

Implications, Considerations, and Success

All of these options have potentially serious political implications. Should
problems arise, the vendor is unlikely to accept your assertion that their testing is
incompetent or quality unacceptable. They might well attack your credibility. If
a senior manager made the choice to use that vendor—and it might been an
expensive choice—that person might side with the vendor against your assertion.

So, you’ll need to bring data to the discussion about these strategies if the
triggering conditions arise during the project. Better yet, if you’re dealing with a
custom developed component, see if you can influence the contract negotiations
up front to require the vendor to submit their tests and their test results, along
with giving you the chance to perform sufficient acceptance testing by your team
prior to payment. Build sufficient contingency plans into your schedule,
including allowing for replacement of the vendor during the project if things
start looking bad. Make sure the vendor understands that you’re paying
attention to quality, and that payment depends on quality delivery. It’s amazing
how motivational that can be for vendors!

For COTS components, you’ll want to arrange a careful component selection
process, including vendor research, talking to references, and acceptance testing
as described above using carefully design tests. Identify alternative sources if
possible. Consider the possibility and the consequence of omitting the
component if it is not essential.

Finally, let me mention one last important consideration. With the risks to system
quality managed at the component level, it’s still possible to make a serious
mistake in the area of testing. Remember that even the best-tested and highest-
quality components might not work well in the particular environment in which
you intend to use them. So, plan on integration testing and system testing the
integrated system yourself.

Integration of COTS and outsourced custom developed software is a smart
choice for many organizations. It is a trend that continues to grow as
organizations gain experience with it. To ensure success on your next integration

Managing Vendor Quality Risk 7 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

Managing Vendor Quality Risk 8 Copyright © 2015, RBCS, All Rights Reserved
www.rbcs-us.com

project, consider the factors that create quality risk in such scenarios. Select
strategies that mitigate those risks. Build risk mitigation and contingency plans
into your project plan. If you do these things, and execute the project carefully,
with an eye on testing and quality, you can control the risks and reduce the
likelihood and impact of component quality problems.

	Quality Risk Factors in Integration
	Trust Your Vendors
	Manage Your Vendors
	Fix Your Vendor
	Test Your Vendor’s Component
	Implications, Considerations, and Success

