
Investing in Software Testing:
The Risks to System Quality

Abstract
Before we can build a high-fidelity test system, we have to understand what
quality means to our customers. Test professionals can avail themselves of three
powerful techniques for analyzing risks to system quality. Targeting our testing
investment by increasing effort for those areas most at risk results in the highest
return on investment.

Introduction
In the previous article, I stressed the importance of a high-fidelity test system;
i.e., one that allows the test team to forecast the customer’s experience of quality
after release. How can you create such test systems? Start by understanding
what quality means to your customers.

Quality and Quality Risks
Quality, while considered an amorphous concept by some, is actually a well-
defined notion in the field of quality management. In Quality Is Free, Phil Crosby
describes quality as “conformance to requirements.” But what if your
requirements-gathering process is poor or non-existent? Many of us have worked
on projects with such questionable requirements. In Software Requirements,
Karl Wiegers identifies a variety of common problems in software requirements
that afflict many projects.

Since I can’t always count on requirements, I prefer J.M. Juran’s definition of
quality. He spends a goodly portion of an early chapter in Juran on Planning for
Quality discussing the meaning of quality, but he also offers a pithy definition:
fitness for use. In other words, quality exists in a product—a coffee maker, a car,
or a software system—when that product is fit for the uses for which the
customers buy it and to which the users set it. A product will be fit for use when it
exhibits the predominant presence of customer-satisfying behaviors and a
relative absence of customer-dissatisfying behaviors.

Armed with this definition of quality, let’s move to the topic of risk. Myriad risks—
i.e., factors possibly leading to loss or injury—menace software development.
When these risks become realities, some projects fail. Wise project managers
plan for and manage risks. In any software development project, we can group
risks into four categories.

Financial risks. How might the project overrun the budget?

Schedule risks. How might the project exceed the allotted time?

Feature risks. How might we build the wrong product?

 Copyright © 2002 Rex Black, All Rights Reserved

Quality risks. How might the product lack customer-satisfying behaviors or
possess customer-dissatisfying behaviors?

Testing allows us to assess the system against the various risks to system
quality, which allows the project team to manage and balance quality risks
against the other three areas.

Classes of Quality Risks
It’s important for test professionals to remember that many kinds of quality risks
exist. The most obvious is functionality: Does the software provide all the
intended capabilities? For example, a word processing program that does not
support adding new text in an existing document is worthless.

While functionality is important, remember my self-deprecating anecdote in the
last article. In that example, my test team and I focused entirely on functionality
to the exclusion of important items like installation. In general, it’s easy to over-
emphasize a single quality risk and misalign the testing effort with customer
usage. Consider the fo llowing examples of other classes of quality risks.

Use cases: working features fail when used in realistic sequences.

Robustness: common errors are handled improperly.

Performance: the system functions properly, but too slowly.

Localization: problems with supported languages, time zones, currencies, etc.

Data quality: a database becomes corrupted or accepts improper data.

Usability: the software’s interface is cumbersome or inexplicable.

Volume/capacity: at peak or sustained loads, the system fails.

Reliability: too often—especially at peak loads—the system crashes, hangs, kills
sessions, and so forth.

In Managing the Testing Process, I provide an extensive list of quality risks. Peter
Neuman, in Computer-Related Risks, catalogs a broad range of system failures
that have cost time, money—and even lives. Cem Kaner, Jack Falk, and Hung
Nguyen include an appendix of 400 common software errors in Testing
Computer Software. Boris Beizer offers a taxonomy of bugs in Software Testing
Techniques. The clever tester can construct a vast catalog of nightmare
scenarios for any but the most trivial software, but you probably don’t have the
time—or the money—to test them all, nor should you.

Tailoring Testing to Quality Risk Priority
To provide maximum return on the testing investment, we have to adjust the
amount of time, resources, and attention we pay to each risk based on its priority.
The priority of a risk to system quality arises from the extent to which that risk
can and might affect the customers’ and users’ experiences of quality. In other
words, the more likely a problem or the more serious the impact of a problem, the
more testing that problem area deserves.

 Copyright © 2002 Rex Black, All Rights Reserved

You can prioritize in a number of ways. One approach I like is to use a
descending scale from one (most risky) to five (least risky) along three
dimensions.

Severity. How dangerous is a failure of the system in this area?

Priority. How much does a failure of the system in this area compromise the
value of the product to customers and users?

Likelihood. What are the odds that a user will encounter a failure in this area,
either due to usage profiles or the technical risk of the problem?

Many such scales exist and can be used to quantify levels of quality risk.

Analyzing Quality Risks
I’m familiar with three techniques for quality risks analysis. The first technique is
informal, and works well regardless of development process maturity. To use it,
list the quality risks that might apply to your software in the leftmost column of a
table. Add a middle column for associated failure modes, and describe the kinds
of problems that can occur within that class of quality risk. Keep the
descriptions—and the table—short. Now, add a blank rightmost column for
priority.

Properly done, the table becomes the map for an exploratory dialogue, either
one-on-one, as a group meeting, or via e -mail, with the key stakeholders in the
project. I seek input from people like development managers, product architects,
business analysts, technical or customer support managers, project managers,
sales and marketing staff, operations personnel, and, if available, customers and
users. In this dialogue, I solicit a priority number—possibly using a three-part
scale as discussed above—for the risks and failure modes, along with delving
into any quality risks that I overlooked. Table 1 below shows a fragment of a
quality risk analysis for a hypothetical word processor.

Quality Risk Failure Mode(s) Priority

Functionality Can’t edit text. 1

 Can’t format text. 1

 Can’t handle tables. 2

 Can’t insert pictures. 3

Performance Display more than two keystrokes behind. 1

 File ops longer than two seconds for large typical
file.

1

 File ops longer than five seconds for large atypical
file.

3

Compatibility Can’t import Word files. 1

 Can’t import WordPerfect files. 3

 Copyright © 2002 Rex Black, All Rights Reserved

Table 1: An Informal Quality Risk Analysis for a Hypothetical Word
Processor

A slightly more formal approach is the one described in the International
Standards Organization document ISO 9126. This standard proposes that quality
of software system can be measured along six major characteristics:

Functionality. Does the system provide the required capabilities?

Reliability. Does the system work as needed when needed?

Usability. Is the system intuitive, comprehensible, and handy to the users?

Efficiency. Is the system sparing in its use of resources?

Maintainability. Can operators, programmers, and customers upgrade the system
as needed?

Performance. Does the system fulfill the users’ requests speedily?

Within these six characteristics, the ISO 9126 process asks that stakeholders
identify the key subcharacteristics for their system. For example, what would it
mean for your system to have quality in the area of performance? For a web
application, it might mean giving an initial responses to user input with a half-
second, completely displaying each page within 30 seconds, and allowing the
typical user to complete an e-commerce sales within two minutes. As with the
informal quality risks analysis process, once the quality subcharacteristics are
identified, stakeholders should determine the priority levels associated with
testing each area.

On very structured development projects, you can formalize the quality risks
analysis process by using Failure Mode and Effect Analysis (FMEA). Figure 1
shows an example of a FMEA chart for a hypothetical word processor. Ideally, all
the stakeholders perform the FMEA in a group meeting. Once again, you should
prioritize the myriad quality risks to identify the most important areas for testing.
In a FMEA chart, the Risk Priority Number is the product of three factors,
Severity, Priority, and Likelihood, as describe above.

 Copyright © 2002 Rex Black, All Rights Reserved

Figure 1: Failure Mode and Effects Analysis for a Hypothetical File Server

Any of these techniques can become time consuming, confusing, and
cumbersome if you try to go into too much detail in the failure modes or quality
subcharacteristics. Focus on relatively high-level descriptions. “Misspelled user
messages,” is good. Trying to list every possible misspelling that could occur in
each error message would be bad. The objective is not to try to document bugs
you haven’t even found yet, but rather to focus test development and execution
activities.

Not every quality risk can be a high priority. When discussing risks to system
quality, I don’t ask people, “Do you want us to make sure this area works?” In the
absence of trade-offs, everyone wants better quality. Setting the standard for
quality higher requires more money spent on testing, pushes out the release
date, and can distract from more important priorities—like focusing the team on
the next release. To determine the real priority of a potential problem, ask
people, “How much money, time, and attention would you be willing to give to
problems in this area? Would you pay for an extra tester to look for bugs in this
area, and would you delay shipping the product if that tester succeed in finding
bugs?” While achieving better quality generates a positive return on investment
in the long run, as with the stock market, you get a better return on investment
where the risk is higher. Happily, unlike the stock market, the risk of your test
effort failing does not increase when you take on the most important risks to
system quality, but rather your chances of test success increase.

Whatever risk analysis process you chose, at the end you should have a ranking
of risks (or quality subcharacteristics) by priority. These risk priorities will help
you winnow down the test effort from everything you conceivably could test to
some manageable, agreed-upon list of what you should test. You should test the

 Copyright © 2002 Rex Black, All Rights Reserved

high priority risks items extensively, the medium priority risk items broadly, and
the low priority risks items in a cursory fashion. The items that pose little if any
risk to the quality of the system should receive none of your scare time,
resources, and attention at all. For more information on these quality risk
analysis techniques, see my first book, Managing the Testing Process, my new
book, Critical Testing Processes Volume I, or D.H. Stamatis’ book, Failure Mode
and Effect Analysis.

Building on Your Foundation
A well-defined, properly prioritized list of quality risks is the foundation of your
test effort. Understanding the importance of each quality risks to your customers
allows you to build a high-fidelity test system, predictive of the customer’s
experience of quality. In construction, sound building techniques are required to
construct a trus tworthy house on a good foundation. Likewise, you now need to
apply sensible test design and implementation methodologies to the creation of
your test system. In the next article, I’ll review some of the common techniques
test engineers can use to build such test systems.

Author Biography
Rex Black is President and Principal Consultant of RBCS, Inc.
(www.RexBlackConsulting.com), a consultancy that provides testing experts
world-wide, serving clients such as Bank One, Cisco, Hitachi, IMG, and
Schlumberger in consulting, training, and hands-on implementation. He’s written
Managing the Testing Process, Critical Testing Processes Volumes I and II, and
numerous articles, along with presenting papers and keynote speeches at
international conferences.

Bibliography
International Standards Organization, ISO/IEC 9126:1991 (E). Geneva,
Switzerland: ISO/IEC Copyright Office, 1991.

B. Beizer, Software Testing Techniques, 2nd Ed. New York, Van Nostrand
Reinhold, 1990.

R. Black, Critical Testing Processes, Volume I. New York, Addison-Wesley,
2002.

R. Black, Managing the Testing Process, 2nd Ed. New York, Wiley, 2002.

P. Crosby, Quality is Free. New York, Mentor, 1980.

J. Juran, Juran on Planning for Quality. New York, The Free Press, 1988.

C. Kaner, et al., Testing Computer Software, 2nd Ed. New York, Wiley, 1999.

P. Neumann, Computer-Related Risks. New York: Addison-Wesley, 1995.

D. Stamatis, Failure Mode and Effect Analysis. Milwaukee, ASQC Quality Press,
1995.

 Copyright © 2002 Rex Black, All Rights Reserved

K. Wiegers, Software Requirements. Redmond: Microsoft Press, 1999.

